Odder 14th of October 2016

Camilla Husted Vestergaard

Flemming Gertz

Plants & Environment

WP 5 - TRENDS

TWO PART STUDY

Development of new concepts for an emission based regulation based on measurements of nitrate leaching from agricultural land

- Test of instruments in lab
 - Equipment
 - Results
 - Conclusions

The purpose was not to set up a scientific study design but to evaluate the practical use of instruments

- Measuring nitrate concentrations in drainage water
 - Need for measurements
 - Possibilities/limitations
 - Experiences
 - Perspectives
 - User guide

TEST OF INSTRUMENTS IN THE LAB

METHOD FOR THE STUDY IN LAB

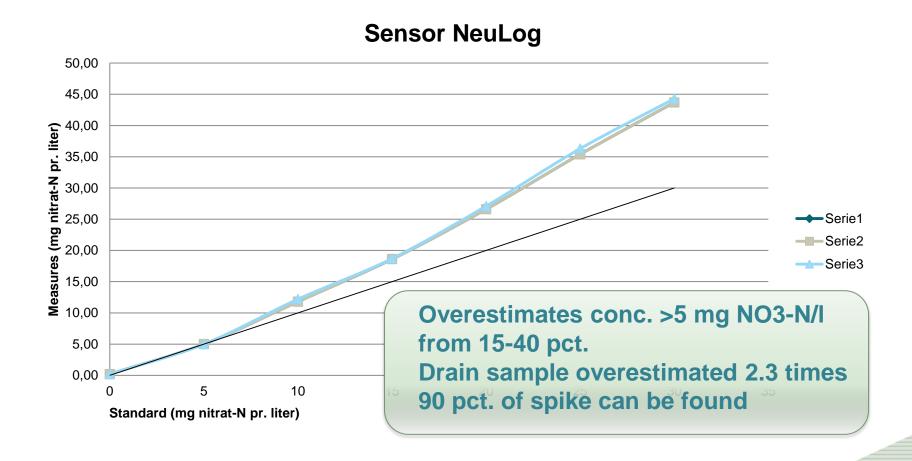
- Calibration of instruments for those needed (standards for 1 mg NO3-N/I and 10 mg NO3-N/I)
- Test of instruments along a standard curve of milliQ (300 mM stock solution of KNO3)
- Test of instruments in drainage water sample (Matrix effect for max of 10% stock volume in sample)
- Comparison with a certified lab analysis of the sample

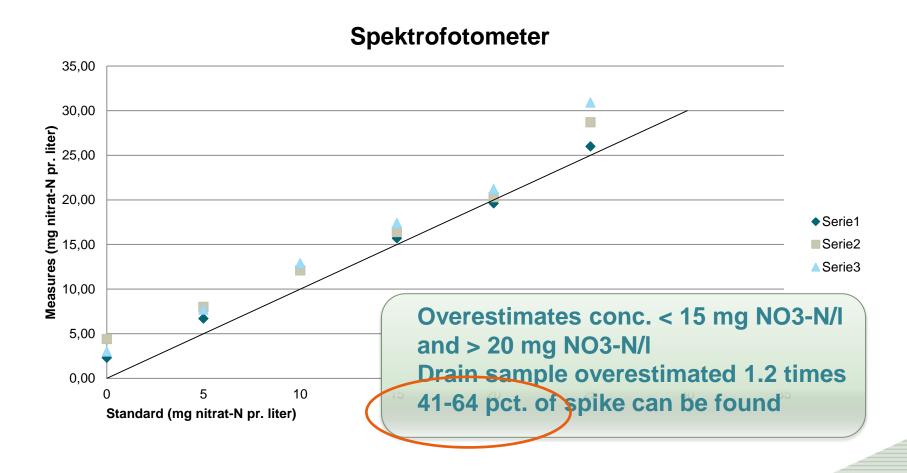
Standards for 0-80 mg NO3-N/I

NO3-N (mg/L)	0	5	10	15	20	25	30	40	50	60	70	80
NO3-N (mM)	0	0,36	0,71	1,07	1,43	1,78	2,14	2,86	3,57	4,28	5,00	5,71
V kolbe (ml)	500	250	250	250	250	250	200	200	100	100	100	100
V stock µl	0	297	595	892	1190	1487	1428	1094	1190	1428	1666	1904

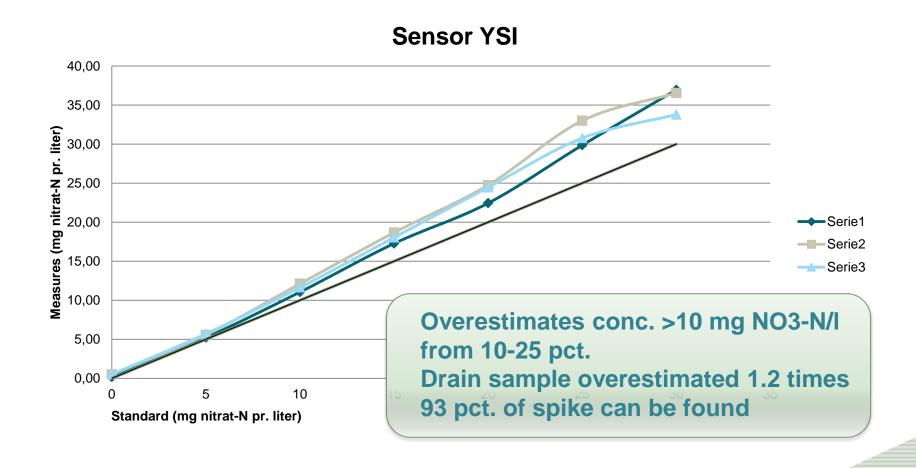
INSTRUMENTS

Method	Product	Range (mg NO3 ⁻ -N L ⁻¹)	Protocol	Waist
Nitrate sensor	NeuLog NUL-241	0,1-14.000	Appendix 1	Non
Nitrate sensor	YSI Professional	0-200	Appendix 2	Non
	Plus			
Nitrate sticks	AquaChek	0-50	Appendix 3	Nitrate sticks
Spectrofotomet	Spectroquant	0,3-30	Appendix 4	Cadmium
ry	Colorimeter			





NEULOG SENSOR



COLORIMETER

YSI PROFESIONAL PLUS

AQUACHEK STICS

Measures	0	5	10	15	20	25	30	40	50	
Serie 1	0	5	10	20	20	20	20	50	50	
		down	up	down	up	up	Up			
Serie 2	0	5	10	20	20	50	50	50	50	
		up	up	up	up	down	down	down		
Serie 3	0	5	20	20	20	20	20	50	50	
			down		up	up	up	down		

Overestimates in all intervals if not prober used

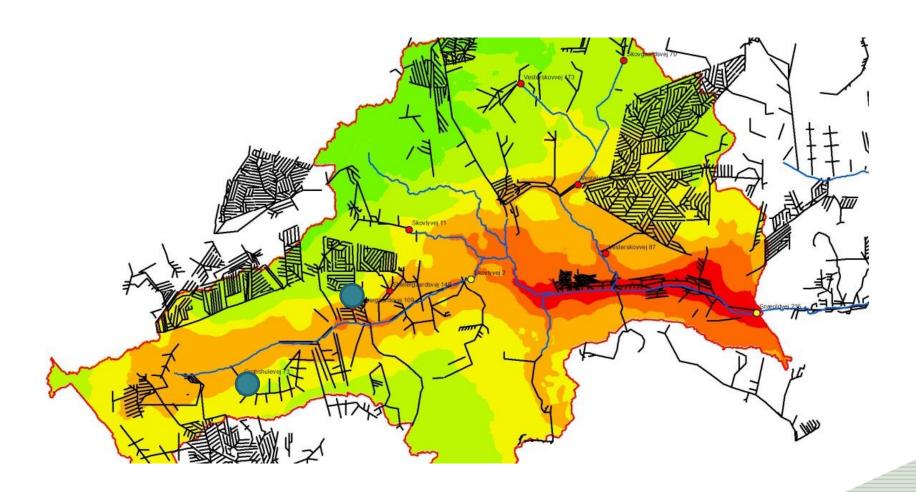
Drain sample overestimated 1.2 times

No test on matrix effect

CONCLUSIONS ON LAB TEST

Overestimates too much Easy to use No matrix effect

Fine standard curve Matrix effect Injurious to health



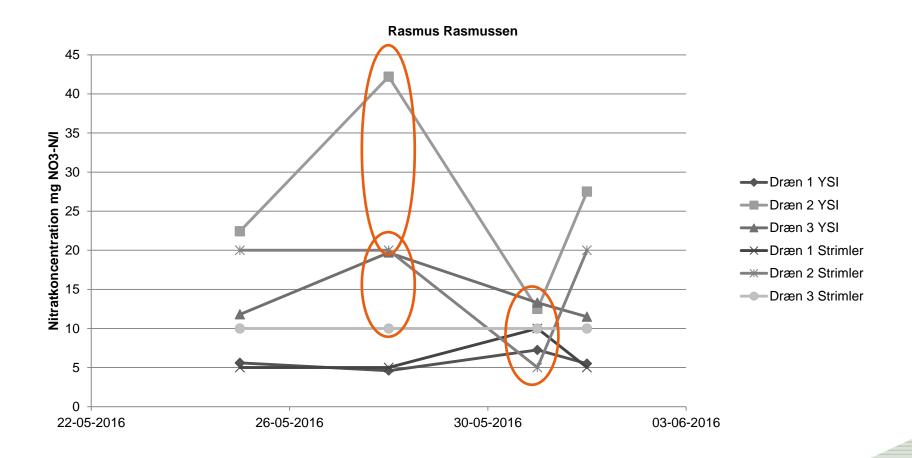
TEST OF INSTRUMENTS IN THE FIELD

LOCATIONS IN FENSHOLT

METHOD FOR THE STUDY IN FIELD

Introduction → testing → evaluation

- Collaboration with farmers and agricultural advisor/LMO
- Selection of three instruments for consultant test and two for farmer test
- Instruction of using the instruments
- Measurement experience over a period of time
- Evaluation in the group (interview and observation)



RESULTS FOR LASSE

RESULTS FOR RASMUS

CONCLUSIONS/PERSPECTIVES

- Both instruments are usable for farmers and advisors for measuring nitrate concentrations in streams and drainage outlets
- Farmers do not find it necessary to have YSI sensor themselves but the strips will do
- The agricultural advisor sees perspectives in using both instruments as screening tools finding suitable areas for constructed wetlands
- The two instruments can both be used for that purpose when the concentration levels are sufficient when measured continuasly during winter discharge period
- Applications for smartphones might be a solution for more validated readings of the strips

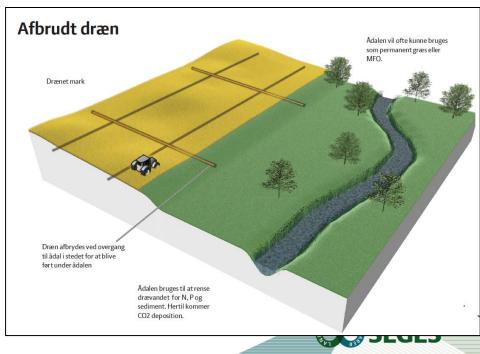
WHAT IS NEXT

- Final evaluation in Holtum?
- Do we need to develop on automatic sampling?

Thank you all for your attention

WP5 - EMISSION BASED REGULATION

Hypothesis H: In collaboration with stakeholders, new concepts for emission based regulation can be developed that allows the inclusion of local scale data and observations in future national regulations.


			2015				2016			2017					2018		
		1	2	3	4	1	2	3	4	1	2	3	4	1	2	3 4	
5	Emission based regulation																
5.1	Catalogue of instruments to reduce nitrate load							→									
5.2	Monitoring concepts and techniques for emission based regulation																
5.3	Test passive sensors for in stream control monitoring																
5.4	Stakeholder involvment in evaluation of emission based monitoring							П									
D5.1	Principles for emission based regulation (papers/guidance)														(b	
M5.1	Monitoring concepts ready for test					М											

5.1 CATALOGUE OF INSTRUMENTS TO REDUCE NITRATE LOAD

- Current knowledge described
 - In sketches
 - In photos
 - In simple words

5.2 MONITORING CONCEPTS AND TECHNIQUES FOR EMISSION BASED REGULATION

- Concept
- Techniques (Camilla)

CONCEPT

ENVIRONMENTAL MEASURES ARE TO BE INITIATED "FROM THE BOTTOM" IN ORDER TO SUCCEED

Flying squad

Catchment officer

Municipalities

Catchment groups (and posibly devision into sub catchment groups)

farmer farmer farmer farmer segregations

WP5 - EMISSION BASED REGULATION

Hypothesis H: In collaboration with stakeholders, new concepts for emission based regulation can be developed that allows the inclusion of local scale data and observations in future national regulations.

			2015			2016				2017					201)18	
		1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
5	Emission based regulation																
5.1	Catalogue of instruments to reduce nitrate load							→									
5.2	Monitoring concepts and techniques for emission based regulation																
5.3	Test passive sensors for in stream control monitoring																
5.4	Stakeholder involvment in evaluation of emission based monitoring																
D5.1	Principles for emission based regulation (papers/guidance)														(d	
M5.1	Monitoring concepts ready for test					М											

